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OutlineOutline

Theoretical motivation for this search

The BaBar detector and dataset

Analyzing the dataset and measuring the 
invisible branching fraction of the Y(1S) 
meson

Systematic errors – still in progress!

Conclusion
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Dark MatterDark Matter

25% of energy in 
the universe

WIMP's typically 
~10's of Gev to 
several TeV

MSSM neutralino 
must be >6 GeV

What about lighter 
dark matter? 
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Dark Matter Accessible to CollidersDark Matter Accessible to Colliders

Lighter Dark Matter1

Astrophysical Evidence 
● 511 keV photons 

from galactic center2

● Implies DM < ~100MeV 3  

NMSSM4 can give DM with this mass

Low mass dark matter can couple to Y(1S)

Allows Y(1S) to decay invisibly
● s-wave – BF = 4.2⋅ 10-4

● p-wave – BF = 1.8⋅ 10-3

Y(1S)
“invisible”
particles

1. McElrath, Bob, Phys. Rev. D72 103508 (2005) arXiv:hep-ph/0506151
2. P. Jean, et.al. Astron.Astrophys. 407 (2003) L55 arXiv:astro-ph/0309484v1
3. C. Boehm, et. al. Phys.Rev.Lett. 92 (2004) 101301 arXiv:astro-ph/0309686v3
4.McElrath, Bob,  arXiv:0712.0016v2

E (keV)
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Standard Model Invisible Y(1S) DecayStandard Model Invisible Y(1S) Decay

The Standard Model Prediction1 for the 
branching fraction of Y(1S) invisible decay is 
~1⋅ 10-5

We will be able to set an upper limit at a 90% 
confidence ~10-4, so this is a search for new 
physics enhancing this decay

1. Chang, L. N. and Lebedev, O. and Ng, J. N., Phys. Lett. B441 419-424 (1998) hep-ph/9806487
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New Physics PotentialNew Physics Potential

Unparticles1,2

Unparticles have a continuous mass 
spectrum

Measurement constrains the dimensionality of 
a scale invariant sector and the energy 
scale of this new physics

Y(1S) → “invisible” measurement cannot 
differentiate between these scenarios 

Current limits on this decay come from Belle at 
BF < 2.5⋅ 10-3[90%CL]3

1. Georgi, HowardPhys.Rev.Lett.98:221601,2007 arXiv:hep-ph/0703260v3
2. Shao-Long Chen, Xiao-Gang He, Ho-Chin Tsai JHEP 0711:010,2007  arXiv:0707.0187v3
3. Tajima, O. and others, Phys. Rev. Lett. 98 132001 (2007) hep-ex/0611041



03/31/2009 Lucas Winstrom - UCSC 7

Invisible Decay of the Y(1S)Invisible Decay of the Y(1S)

How does one detect an “invisible” decay?

BaBar has gathered a collection of Y(3S) mesons

The Y(3S) has a decay mode of 
Y(3S) → Y(1S)π+π -, providing a data set of Y(1S) 
particles that can be identified without a visible 
decay by the presence of these two pions

π+

π -

Y(3S) Y(1S)
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Y(3S) Physics at Y(3S) Physics at BaBarBaBar

Originally designed as a “B” 
meson factory – Running at 
Y(4S) resonance, creating B 
and anti-B pairs
December 22nd 2007 – case to 
run at Y(3S) resonance was 
made, BaBar became a “b” 
quark factory 
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Y(3S) Physics at Y(3S) Physics at BaBarBaBar

Data “On Resonance” at Y(3S) Mass

Data “Off Resonance” Away from  Y(3S) Mass
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Y(3S) Physics at Y(3S) Physics at BaBarBaBar

122 Million Y(3S) at BaBar

11 Million at Belle

6 Million at CLEO

122 Million Y(3S) with a 
branching fraction of 
0.0448 to Y(1S)π+π - 

gives 5.5 Million 
potential Y(1S) mesons 
that can be identified
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The BaBar DetectorThe BaBar Detector
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The Silicon Vertex DetectorThe Silicon Vertex Detector

5 layer double sided 
silicon strip detector
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The Drift ChamberThe Drift Chamber
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The Detector of Internally Reflected The Detector of Internally Reflected 
Cherenkov RadiationCherenkov Radiation
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The Electromagnetic CalorimeterThe Electromagnetic Calorimeter

6500 CsI Crystals
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The Instrumented Flux Return DetectorThe Instrumented Flux Return Detector
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Analysis OverviewAnalysis Overview

Identifying Y(1S) candidates

Identifying potential backgrounds to the 
measurement

Measurement of the signal

Finding the recoil mass shape

Systematic Errors
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Tag Analysis on Presence of PionsTag Analysis on Presence of Pions

Y(3S) → Y(1S)π+π -

Two Different types of backgrounds – peaking and non-peaking 

Most of the data excess comes from poorly modeled photon photon fusion events

π+

π -

Y(3S) Y(1S)

Mass that pions recoil against
Monte Carlo Simulation

Mass that pions recoil against
Data Superimposed on 
Monte Carlo Simulation

Peaking Background

Non-Peaking Background

mrecoil
2 =sm−2 s E
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Data Samples for this AnalysisData Samples for this Analysis

Looking at various data samples allows us to 
perform this measurement
“There are known knowns. There are things we know that we know. 
There are known unknowns. That is to say, there are things that we now 
know we don’t know. But there are also unknown unknowns. There are 
things we do not know we don’t know” -Donald Rumsfeld

Detectable Y(1S) Decay

2 Lepton Collection

1 Lepton Collection

Undetectable Y(1S) Decay

On Peak Collection

Off Peak Collection
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Using Visible Data to Determine Signal Shape Using Visible Data to Determine Signal Shape 
“Known Knowns”“Known Knowns”

We want the shape of 
the dipion recoil mass 
spectrum

We gather data with 4 
tracks: 2 soft tracks from 
pions and 2 hard tracks 
from Y(1S) → l+l-

We fit a “Cruijff” function 
plus a linear function to 
this to find a signal 
shape

Fit to Data

Fit to MC Simulation
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Multivariate Discrimination AlgorithmMultivariate Discrimination Algorithm
Random Forest (MVA)Random Forest (MVA)

Decision Tree

Random Forest of 
Decision Trees

Random ordering of inputs 
in many trees

final output weighted 
average of these

Training our Random 
Forest

Sideband Data as 
background 

Signal Monte Carlo 
simulation 
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Choosing MVA InputsChoosing MVA Inputs

Need information 
that can discriminate 
between signal and 
background events

The final MVA output 
must be 
uncorrelated with 
dipion recoil mass

Train the algorithm on 
sideband data as the 
background and 
Monte Carlo 
simulation of the 
signal

List of MVA Inputs:
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MVA OutputMVA Output

Want to discriminate 
between a signal and 
backgrounds without using 
the recoil mass of the 
dipion system

Construct a decision tree 
random forest algorithm to 
differentiate between signal 
and background events

Choose MVA cut to 
maximize figure of merit 
and minimize upper limit on 
measurement

MVA=0.8
Chosen
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Confirming MVA Not Correlated with Dipion Confirming MVA Not Correlated with Dipion 
Recoil MassRecoil Mass

All the MVA inputs are individually 
uncorrelated with dipion recoil mass

Want to make sure that no function of the 
inputs can predict recoil mass

Use a Neural Net

Inputs from MVA

Train on m
recoil
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Neural Net Correlations with Recoil MassNeural Net Correlations with Recoil Mass

Training a Neural Net on the same inputs
 as the MVA but using the recoil 

mass of the dipion as the output results 
in an uncorrelated NN output

Giving the Neural Net the additional information of the 
two pion momenta from the dipion system allows it to

predict the dipion recoil mass quite well

True Recoil Mass (GeV)

True Recoil Mass (GeV)

NN Predicted 
Recoil Mass (GeV)

NN Predicted 
Recoil Mass (GeV)
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Expected Undetected DecaysExpected Undetected Decays
“Known Unknowns”“Known Unknowns”

We expect some decays of the Y(1S) to go undetected 
because of the non-hermeticity of the detector

Almost all (99.8%) of these come from Y(1S) → l+l- in the 
case that the leptons escape down the beam pipe

Recoil Mass (GeV/c2)
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Using Visible Data to Calibrate the Using Visible Data to Calibrate the 
Monte Carlo SimulationMonte Carlo Simulation

In addition to the 2 lepton sample used to measure 
the signal shape, we also collect a 1 lepton sample

Use this sample to assess the accuracy of the 
simulation in angular distribution of the lepton 
decays, allowing calculation of undetected decays

Non-Signal

Signal

Total

Dipion Recoil Mass of 1 Lepton Sample Zoom
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Aside:Aside:
sPlotssPlots11 – Projecting a Pure Signal from a Fit – Projecting a Pure Signal from a Fit

We want to compare our Monte Carlo simulation of 
Y(1S) → l+l- with the actual data, which incorporates a 
component that does not come from this process

We appeal to a technique known as sPlots:

1. Muriel Pivk, Francois R. Le Diberder Nucl.Instrum.Meth.A555:356-369,2005 arXiv:physics/0402083v3

Signal

Background
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CorrectingCorrecting the the Simulation with Control Data Simulation with Control Data

Use 2 Lepton Data Sample in a 
restricted range of the detector to 
calculate a correction factor for the 
yield of the simulation
Apply this correction factor to both 
the 1 and 2 Lepton simulated 
datasets and compare with the Data

Difference Seen 
at edge of 
detector 

2 Lepton Samples
sPlot of 1 Lepton Data, 
1 Lepton Simulation
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Correcting 1 Lepton SimulationCorrecting 1 Lepton Simulation

Use a “killing” procedure on simulation at edge of detector to align 
with data

Events that are killed are added to the undetected simulation, 
correcting the expected number of undetectable events

s

Use corrected simulation and killed events calculate expected 
yield: 2301 from scaling and 169 from killing, totaling 2470 
expected.
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Fitting Invisible Data SetFitting Invisible Data Set
“Unknown Unknowns”“Unknown Unknowns”

 

First Order Polynomial BG

Unbinned Maximum Likelihood Fit
Unblinded Data

Total Fit

In order to find the signal yield, we use a Maximum Likelihood 
fit of three functions:

Use a first order polynomial background with floated yield
Use a Peaking Function of the fixed appropriate yield
Fit another Peaking Function with a floating yield 

This floating yield is the number of invisible decays
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Estimating SensitivityEstimating Sensitivity

1. Gary J. Feldman, Robert D. Cousins Phys.Rev.D57:3873-3889,1998  arXiv:physics/9711021v2

Use method of Feldman 
and Cousins1 to estimate 
sensitivity to signal

In the absence of signal
BF =0±1.6⋅ 10-4 (stat.)

Run “Toy Monte Carlo” 
Experiments with different 
signal hypotheses

Calculate 90% confidence 
limits in the absence of a 
signal 

BF < 2.8⋅ 10-4 [90%CL]

68% Confidence Belts

90% Confidence Belts

x10-3

x10-3
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Sources of Systematic ErrorSources of Systematic Error

Currently calculating systematics for this 
measurement

2 Lepton scaling correction – 1.1%

1 Lepton correction – 2.0%

Hadronic Peaking Backgrounds – 0.6%

Software Trigger – 0.9%

Y(3S) Counting – 1.1%

MVA systematics still under investigation
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Current State of AnalysisCurrent State of Analysis

Checking effects of MVA on data and simulation

Using sPlots to project distributions of MVA inputs 
from invisible dataset and compare them to 
predictions
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Variables in 2 Lepton Control SampleVariables in 2 Lepton Control Sample

Excellent agreement 
between data and 
Monte Carlo 
simulation in 2 Lepton 
Control Sample

Suggests perhaps 
differences in the 
hardware trigger 
efficiency for the data 
and simulation in the
0 Lepton Sample
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Plans for this DiscrepancyPlans for this Discrepancy

Check correlations with hardware triggers in 
these variables

Look for other variables involved in the MVA 
that are conspiring to shift these distributions

Look at models of dipion transition used 
within the Monte Carlo simulation (from 
CLEO1).

1.  D. Cronin-Hennessy, et al  Phys.Rev.D76:072001,2007 arXiv:0706.2317v2 
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Preliminary ResultsPreliminary Results

After eliminating data used for training the MVA, 
we have 91.42 million Y(3S) events

A signal efficiency of 16.4% and a 
BF(Y(3S) → Y(1S)π+π -) of 4.48% giving ~67.2 
thousand Y(1S) mesons

We measure a yield of BF(Y(1S) → invisible) that 
is consistent with zero

We are in the process of calculating systematics
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ConclusionConclusion

Exciting new result from our exciting new dataset

Hopefully, we will soon have the systematics 
complete and will be able to quote a new limit 

Data set 7 times as large as previous data set

Upper limit estimate of 2.8⋅ 10-4 as opposed to 
previous best of 2.5⋅ 10-3

Will constrain NMSSM predictions that go up to 
4.2⋅ 10-4  

The systematic error estimation is still ongoing 

Analysis still in progress and undergoing internal 
review
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Backup SlidesBackup Slides
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UnparticlesUnparticles

Unparticles and Y(1S) → “invisible” + �

Allows identification of mass resonances or a 
continuous mass spectrum, differentiating 
between standard particles or unparticles
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Removing Radiative Dilepton BackgroundRemoving Radiative Dilepton Background
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MVA InputsMVA Inputs
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MVA InputsMVA Inputs
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MVA InputsMVA Inputs
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Single Input Correlations with Recoil MassSingle Input Correlations with Recoil Mass

Recoil MassRecoil Mass

Recoil Mass

Recoil Mass

Recoil Mass
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2 Lepton Data Set2 Lepton Data Set

p
T 
for 2 Lepton Data – Lower Statistics 

data set
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Loosening MVA CutLoosening MVA Cut

Changing the MVA cut to 0.1 gives a different 
distribution in these variables:
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